Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Biomol Biomed ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38606907

RESUMO

The 67 kDa laminin receptor (67LR) was identified as the first laminin receptor shown to be involved in the carcinogenesis of various cancers, including colorectal cancer. While the exact composition of this 67 kDa receptor remains unknown, it has been reported to be formed by the 37 kDa ribosomal protein SA (RPSA) covalently attached to another unidentified protein. Our analysis of 67LR in colorectal cancer cell extracts showed the 67 kDa immunoreactive protein corresponding to 67LR in the soluble protein fraction, while some 37 kDa RPSA exhibited plasma membrane-like properties. Proteomic analysis of the 67 kDa fraction revealed the absence of RPSA, however, the ß-galactosidase-related 67 kDa elastin-binding protein, another laminin binding receptor, was identified. The downregulation of ß-galactosidase through short hairpin RNA (shRNA) led to a reduction in both 67LR and 67EBP immunoreactive proteins, indicating a possible misidentification of 67LR and 67EBP in colorectal cancer cells.

2.
Biomedicines ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397935

RESUMO

Inflammatory bowel disease (IBD) flare-ups exhibit symptoms that are similar to other diseases and conditions, making diagnosis and treatment complicated. Currently, the gold standard for diagnosing and monitoring IBD is colonoscopy and biopsy, which are invasive and uncomfortable procedures, and the fecal calprotectin test, which is not sufficiently accurate. Therefore, it is necessary to develop an alternative method. In this study, our aim was to provide proof of concept for the application of Sequential Window Acquisition of All Theoretical Mass Spectra-Mass spectrometry (SWATH-MS) and machine learning to develop a non-invasive and accurate predictive model using the stool proteome to distinguish between active IBD patients and symptomatic non-IBD patients. Proteome profiles of 123 samples were obtained and data processing procedures were optimized to select an appropriate pipeline. The differentially abundant analysis identified 48 proteins. Utilizing correlation-based feature selection (Cfs), 7 proteins were selected for proceeding steps. To identify the most appropriate predictive machine learning model, five of the most popular methods, including support vector machines (SVMs), random forests, logistic regression, naive Bayes, and k-nearest neighbors (KNN), were assessed. The generated model was validated by implementing the algorithm on 45 prospective unseen datasets; the results showed a sensitivity of 96% and a specificity of 76%, indicating its performance. In conclusion, this study illustrates the effectiveness of utilizing the stool proteome obtained through SWATH-MS in accurately diagnosing active IBD via a machine learning model.

3.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685847

RESUMO

Metallic nanoparticles (mNPs) are widely used as food additives and can interact with gliadin triggering an immune response, but evaluation of the effects on crypts, hypertrophic in celiac subjects, is still lacking. This study evaluated the effects of gold and silver mNPs in combination with gliadin on crypt-like cells (HIEC-6). Transmission electron microscopy (TEM) was used to evaluate gliadin-mNP aggregates in cells. Western blot and immunofluorescence analysis assessed autophagy-related molecule levels (p62, LC3, beclin-1, EGFR). Lysosome functionality was tested with acridine orange (AO) and Magic Red assays. TEM identified an increase in autophagic vacuoles after exposure to gliadin + mNPs, as also detected by significant increments in LC3-II and p62 expression. Immunofluorescence confirmed the presence of mature autophagosomes, showing LC3 and p62 colocalization, indicating an altered autophagic flux, further assessed with EGFR degradation, AO and Magic Red assays. The results showed a significant reduction in lysosomal enzyme activity and a modest reduction in acidity. Thus, gliadin + mNPs can block the autophagic flux inducing a lysosomal defect. The alteration of this pathway, essential for cell function, can lead to cell damage and death. The potential effects of this copresence in food should be further characterized to avoid a negative impact on celiac disease subjects.


Assuntos
Ouro , Nanopartículas , Humanos , Glutens , Prata , Gliadina , Autofagia , Laranja de Acridina , Receptores ErbB
4.
J Lipid Res ; 64(9): 100423, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558128

RESUMO

Biallelic pathogenic variants of the Sar1b gene cause chylomicron retention disease (CRD) whose central phenotype is the inability to secrete chylomicrons. Patients with CRD experience numerous clinical symptoms such as gastrointestinal, hepatic, neuromuscular, ophthalmic, and cardiological abnormalities. Recently, the production of mice expressing either a targeted deletion or mutation of Sar1b recapitulated biochemical and gastrointestinal defects associated with CRD. The present study was conducted to better understand little-known aspects of Sar1b mutations, including mouse embryonic development, lipid profile, and lipoprotein composition in response to high-fat diet, gut and liver cholesterol metabolism, sex-specific effects, and genotype-phenotype differences. Sar1b deletion and mutation produce a lethal phenotype in homozygous mice, which display intestinal lipid accumulation without any gross morphological abnormalities. On high-fat diet, mutant mice exhibit more marked abnormalities in body composition, adipose tissue and liver weight, plasma cholesterol, non-HDL cholesterol and polyunsaturated fatty acids than those on the regular Chow diet. Divergences were also noted in lipoprotein lipid composition, lipid ratios (serving as indices of particle size) and lipoprotein-apolipoprotein distribution. Sar1b defects significantly reduce gut cholesterol accumulation while altering key players in cholesterol metabolism. Noteworthy, variations were observed between males and females, and between Sar1b deletion and mutation phenotypes. Overall, mutant animal findings reveal the importance of Sar1b in several biochemical, metabolic and developmental processes.


Assuntos
Dieta Hiperlipídica , Desenvolvimento Embrionário , Proteínas Monoméricas de Ligação ao GTP , Animais , Feminino , Humanos , Masculino , Camundongos , Colesterol/metabolismo , Quilomícrons/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética
5.
Exp Cell Res ; 430(2): 113723, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499931

RESUMO

Intestinal epithelial cell differentiation is a highly controlled and orderly process occurring in the crypt so that cells migrating out to cover the villi are already fully functional. Absorptive cell precursors, which originate from the stem cell population located in the lower third of the crypt, are subject to several cycles of amplification in the transit amplifying (TA) zone, before reaching the terminal differentiation compartment located in the upper third. There is a large body of evidence that absorptive cell differentiation is halted in the TA zone through various epigenetic, transcriptional and intracellular signalling events or mechanisms allowing the transient expansion of this cell population but how these mechanisms are themself regulated remains obscure. One clue can be found in the epithelial cell-matrix microenvironment located all along the crypt-villus axis. Indeed, a previous study from our group revealed that α5-subunit containing laminins such as lamimin-511 and 512 inhibit early stages of differentiation in Caco-2/15 cells. Among potential receptors for laminin 511/512 is the integrin α7ß1, which has previously been reported to be expressed in the human intestinal crypts and in early stages of Caco-2/15 cell differentiation. In this study, the effects of knocking down ITGA7 in Caco-2/15 cells were studied using shRNA and CRISPR/Cas9 strategies. Abolition of the α7 integrin subunit resulted in a significant increase in the level of differentiation and polarization markers as well as the morphological features of intestinal cells. Activities of focal adhesion kinase and Src kinase were both reduced in α7-knockdown cells while the three major intestinal pro-differentiation factors CDX2, HNFα1 and HNF4α were overexpressed. Two epigenetic events associated with intestinal differentiation, the reduction of tri-methylated lysine 27 on histone H3 and the increase of acetylation of histone H4 were also observed in α7-knockdown cells. On the other hand, the ablation of α7 had no effect on cell proliferation. In conclusion, these data indicate that integrin α7ß1 acts as a major repressor of absorptive cell terminal differentiation in the Caco-2/15 cell model and suggest that the laminin-α7ß1 integrin interaction occurring in the transit amplifying zone of the adult intestine is involved in the transient halting of absorptive cell terminal differentiation.


Assuntos
Integrinas , Intestinos , Humanos , Células CACO-2 , Integrinas/genética , Integrinas/metabolismo , Diferenciação Celular/fisiologia , Histonas/metabolismo
6.
Cells ; 12(7)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37048132

RESUMO

Primary cilia are sensory antennae located at the cell surface which mediate a variety of extracellular signals involved in development, tissue homeostasis, stem cells and cancer. Primary cilia are found in an extensive array of vertebrae cells but can only be generated when cells become quiescent. The small intestinal epithelium is a rapidly self-renewing tissue organized into a functional unit called the crypt-villus axis, containing progenitor and differentiated cells, respectively. Terminally differentiated villus cells are notoriously devoid of primary cilia. We sought to determine if intestinal crypts contain a quiescent cell population that could be identified by the presence of primary cilia. Here we show that primary cilia are detected in a subset of cells located deep in the crypts slightly above a Paneth cell population. Using a normal epithelial proliferative crypt cell model, we show that primary cilia assembly and activity correlate with a quiescent state. These results provide further evidence for the existence of a quiescent cell population in the human small intestine and suggest the potential for new modes of regulation in stem cell dynamics.


Assuntos
Cílios , Intestino Delgado , Humanos , Duodeno , Divisão Celular , Celulas de Paneth
7.
Anat Rec (Hoboken) ; 306(5): 1054-1061, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35648375

RESUMO

Intestinal cell stemness, proliferation and differentiation are complex processes all occurring in distinct compartments of the crypt that need to be closely regulated to ensure proper epithelial renewal. The involvement of the Hippo pathway in intestinal epithelial proliferation and regeneration after injury via the regulation of its effectors YAP1 and TAZ has been well-documented over the last decade. The implication of YAP1 and TAZ on intestinal epithelial cell differentiation is less clear. Using intestinal cell models in which the expression of YAP1 and TAZ can be modulated, our group showed that YAP1 inhibits differentiation of the two main intestinal epithelial cell types, goblet and absorptive cells through a specific mechanism involving the repression of prodifferentiation transcription factor CDX2 expression. Further analysis provided evidence that the repressive effect of YAP1 on intestinal differentiation is mediated by regulation of the Hippo pathway by Src family kinase activity. Interestingly, the TAZ paralog does not seem to be involved in this process, which provides another example of the lack of perfect complementarity of the two main Hippo effectors.


Assuntos
Diferenciação Celular , Células Epiteliais , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células , Células Epiteliais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Transativadores , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232903

RESUMO

Necrotizing enterocolitis (NEC) is a life-threatening condition for premature infants in neonatal intensive care units. Finding indicators that can predict NEC development before symptoms appear would provide more time to apply targeted interventions. In this study, stools from 132 very-low-birth-weight (VLBW) infants were collected daily in the context of a multi-center prospective study aimed at investigating the potential of fecal biomarkers for NEC prediction using proteomics technology. Eight of the VLBW infants received a stage-3 NEC diagnosis. Stools collected from the NEC infants up to 10 days before their diagnosis were available for seven of them. Their samples were matched with those from seven pairs of non-NEC controls. The samples were processed for liquid chromatography-tandem mass spectrometry analysis using SWATH/DIA acquisition and cross-compatible proteomic software to perform label-free quantification. ROC curve and principal component analyses were used to explore discriminating information and to evaluate candidate protein markers. A series of 36 proteins showed the most efficient capacity with a signature that predicted all seven NEC infants at least a week in advance. Overall, our study demonstrates that multiplexed proteomic signature detection constitutes a promising approach for the early detection of NEC development in premature infants.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Doenças do Prematuro , Biomarcadores/análise , Enterocolite Necrosante/diagnóstico , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Espectrometria de Massas , Estudos Prospectivos , Proteômica
9.
Front Immunol ; 13: 916187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812445

RESUMO

Fibrinogen is a large molecule synthesized in the liver and released in the blood. Circulating levels of fibrinogen are upregulated after bleeding or clotting events and support wound healing. In the context of an injury, thrombin activation drives conversion of fibrinogen to fibrin. Fibrin deposition contains tissue damage, stops blood loss, and prevents microbial infection. In most circumstances, fibrin needs to be removed to allow the resolution of inflammation and tissue repair, whereas failure of this may lead to the development of various disorders. However, the contribution of fibrinogen to tissue inflammation and repair is likely to be context-dependent. In this study, the concept that fibrin needs to be removed to allow tissue repair and to reduce inflammation is challenged by our observations that, in the intestine, fibrinogen is constitutively produced by a subset of intestinal epithelial cells and deposited at the basement membrane as fibrin where it serves as a substrate for wound healing under physiological conditions such as epithelial shedding at the tip of the small intestinal villus and surface epithelium of the colon as well as under pathological conditions that require rapid epithelial repair. The functional integrity of the intestine is ensured by the constant renewal of its simple epithelium. Superficial denuding of the epithelial cell layer occurs regularly and is rapidly corrected by a process called restitution that can be influenced by various soluble and insoluble factors. Epithelial cell interaction with the extracellular matrix greatly influences the healing process by acting on cell morphology, adhesion, and migration. The functional contribution of a fibrin(ogen) matrix in the intestine was studied under physiological and pathological contexts. Our results (immunofluorescence, immunoelectron microscopy, and quantitative PCR) show that fibrin(ogen) is a novel component of the basement membrane associated with the differentiated epithelial cell population in both the small intestine and colon. Fibrin(ogen) alone is a weak ligand for epithelial cells and behaves as an anti-adhesive molecule in the presence of type I collagen. Furthermore, the presence of fibrin(ogen) significantly shortens the time required to achieve closure of wounded epithelial cell monolayers and co-cultures in a PI3K-dependent manner. In human specimens with Crohn's disease, we observed a major accumulation of fibrin(ogen) throughout the tissue and at denuded sites. In mice in which fibrin formation was inhibited with dabigatran treatment, dextran sulfate sodium administration provoked a significant increase in the disease activity index and pathological features such as mucosal ulceration and crypt abscess formation. Taken together, these results suggest that fibrin(ogen) contributes to epithelial healing under both normal and pathological conditions.


Assuntos
Fibrina , Fosfatidilinositol 3-Quinases , Animais , Células Epiteliais/metabolismo , Estrona/análogos & derivados , Fibrina/metabolismo , Fibrinogênio/metabolismo , Inflamação/metabolismo , Intestinos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Cicatrização
10.
Pediatr Res ; 91(1): 129-136, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465872

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is a major challenge for premature infants in neonatal intensive care units and efforts toward the search for indicators that could be used to predict the development of the disease have given limited results until now. METHODS: In this study, stools from 132 very low birth weight infants were collected daily in the context of a multi-center prospective study aimed at investigating the potential of fecal biomarkers for NEC prediction. Eight infants (~6%) received a stage 3 NEC diagnosis. Their stools collected up to 10 days before diagnosis were included and matched with 14 non-NEC controls and tested by ELISA for the quantitation of eight biomarkers. RESULTS: Biomarkers were evaluated in all available stool samples leading to the identification of lipocalin-2 and calprotectin as the two most reliable predicting markers over the 10-day period prior to NEC development. Pooling the data for each infant confirmed the significance of lipocalin-2 and calprotectin, individually and in combination 1 week in advance of the NEC clinical diagnosis. CONCLUSIONS: The lipocalin-2 and calprotectin tandem represents a significant biomarker signature for predicting NEC development. Although not yet fulfilling the "perfect biomarker" criteria, it represents a first step toward it. IMPACT: Stool biomarkers can be used to predict NEC development in very low birth weight infants more than a week before the diagnosis. LCN2 was identified as a new robust biomarker for predicting NEC development, which used in conjunction with CALPRO, allows the identification of more than half of the cases that will develop NEC in very low birth weight infants. Combining more stool markers with the LCN2/CALPRO tandem such as PGE2 can further improve the algorithm for the prediction of NEC development.


Assuntos
Enterocolite Necrosante/diagnóstico , Fezes/química , Recém-Nascido Prematuro , Complexo Antígeno L1 Leucocitário/metabolismo , Lipocalina-2/metabolismo , Biomarcadores/metabolismo , Enterocolite Necrosante/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino
11.
Biol Open ; 10(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34693980

RESUMO

Intestinal cell lineage differentiation is a tightly regulated mechanism that involves several intracellular signaling pathways affecting the expression of a variety of transcription factors, which ultimately regulate cell specific gene expression. Absorptive and goblet cells are the two main epithelial cell types of the intestine. Previous studies from our group using an shRNA knockdown approach have shown that YAP1, one of the main Hippo pathway effectors, inhibits the differentiation of these two cell types. In the present study, we show that YAP1 activity is regulated by Src family kinases (SFKs) in these cells. Inhibition of SFKs led to a sharp reduction in YAP1 expression at the protein level, an increase in CDX2 and the P1 forms of HNF4α and of absorptive and goblet cell differentiation specific markers. Interestingly, in Caco-2/15 cells which express both YAP1 and its paralog TAZ, TAZ was not reduced by the inhibition of SFKs and its specific knockdown rather impaired absorptive cell differentiation indicating that YAP1 and TAZ are not always interchangeable for regulating cell functions. This article has an associated First Person interview with the first author of the paper.


Assuntos
Diferenciação Celular/genética , Células Epiteliais/enzimologia , Via de Sinalização Hippo/genética , Proteínas de Sinalização YAP/fisiologia , Quinases da Família src/fisiologia , Células CACO-2 , Humanos , Intestinos/citologia
12.
Biomolecules ; 11(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204944

RESUMO

Proteomics can map extracellular vesicles (EVs), including exosomes, across disease states between organisms and cell types. Due to the diverse origin and cargo of EVs, tailoring methodological and analytical techniques can support the reproducibility of results. Proteomics scans are sensitive to in-sample contaminants, which can be retained during EV isolation procedures. Contaminants can also arise from the biological origin of exosomes, such as the lipid-rich environment in human milk. Human milk (HM) EVs and exosomes are emerging as a research interest in health and disease, though the experimental characterization and functional assays remain varied. Past studies of HM EV proteomes have used data-dependent acquisition methods for protein detection, however, improvements in data independent acquisition could allow for previously undetected EV proteins to be identified by mass spectrometry. Depending on the research question, only a specific population of proteins can be compared and measured using isotope and other labelling techniques. In this review, we summarize published HM EV proteomics protocols and suggest a methodological workflow with the end-goal of effective and reproducible analysis of human milk EV proteomes.


Assuntos
Vesículas Extracelulares/química , Proteínas do Leite/análise , Leite Humano/química , Proteômica/métodos , Biologia Computacional/métodos , Biologia Computacional/normas , Exossomos/química , Humanos , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Proteômica/normas , Reprodutibilidade dos Testes , Ultracentrifugação/métodos , Ultracentrifugação/normas
13.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198897

RESUMO

The introduction of metallic nanoparticles (mNPs) into the diet is a matter of concern for human health. In particular, their effect on the gastrointestinal tract may potentially lead to the increased passage of gluten peptides and the activation of the immune response. In consequence, dietary mNPs could play a role in the increasing worldwide celiac disease (CeD) incidence. We evaluated the potential synergistic effects that peptic-tryptic-digested gliadin (PT) and the most-used food mNPs may induce on the intestinal mucosa. PT interaction with mNPs and their consequent aggregation was detected by transmission electron microscopy (TEM) analyses and UV-Vis spectra. In vitro experiments on Caco-2 cells proved the synergistic cytotoxic effect of PT and mNPs, as well as alterations in the monolayer integrity and tight junction proteins. Exposure of duodenal biopsies to gliadin plus mNPs triggered cytokine production, but only in CeD biopsies. These results suggest that mNPs used in the food sector may alter intestinal homeostasis, thus representing an additional environmental risk factor for the development of CeD.


Assuntos
Doença Celíaca/dietoterapia , Dieta , Glutens/metabolismo , Nanopartículas/uso terapêutico , Biópsia , Células CACO-2 , Doença Celíaca/imunologia , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Homeostase/imunologia , Humanos , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Nanopartículas/metabolismo , Triticum/efeitos adversos
14.
J Lipid Res ; 62: 100085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33964306

RESUMO

Chylomicron retention disease (CRD) is an autosomal recessive disorder associated with biallelic Sar1b mutations leading to defects in intracellular chylomicron (CM) trafficking and secretion. To date, a direct cause-effect relationship between CRD and Sar1b mutation has not been established, but genetically modified animal models provide an opportunity to elucidate unrecognized aspects of these mutations. To examine the physiological role and molecular mechanisms of Sar1b function, we generated mice expressing either a targeted deletion or mutation of human Sar1b using the CRISPR-Cas9 system. We found that deletion or mutation of Sar1b in mice resulted in late-gestation lethality of homozygous embryos. Moreover, compared with WT mice, heterozygotes carrying a single disrupted Sar1b allele displayed lower plasma levels of triglycerides, total cholesterol, and HDL-cholesterol, along with reduced CM secretion following gastric lipid gavage. Similarly, decreased expression of apolipoprotein B and microsomal triglyceride transfer protein was observed in correlation with the accumulation of mucosal lipids. Inefficient fat absorption in heterozygotes was confirmed via an increase in fecal lipid excretion. Furthermore, genetically modified Sar1b affected intestinal lipid homeostasis as demonstrated by enhanced fatty acid ß-oxidation and diminished lipogenesis through the modulation of transcription factors. This is the first reported mammalian animal model with human Sar1b genetic defects, which reproduces some of the characteristic CRD features and provides a direct cause-effect demonstration.


Assuntos
Hipobetalipoproteinemias , Síndromes de Malabsorção
15.
Cancers (Basel) ; 13(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799738

RESUMO

Current approved non-invasive screening methods for colorectal cancer (CRC) include FIT and DNA-FIT testing, but their efficacy for detecting precancerous lesions that are susceptible to progressing to CRC such as advanced adenomas (AA) remains limited, thus requiring further options to improve the detection of CRC lesions at earlier stages. One of these is host mRNA stool testing. The aims of the present study were to identify specific stool mRNA targets that can predict AA and to investigate their stability under a clinical-like setting. A panel of mRNA targets was tested on stool samples obtained from 102 patients including 78 CRC stage I-III and 24 AA as well as 32 healthy controls. Area under the receiver operating characteristic (ROC) curves were calculated to establish sensitivities and specificities for individual and combined targets. Stability experiments were performed on freshly obtained specimens. Six of the tested targets were found to be specifically increased in the stools of patients with CRC and three in the stools of both AA and CRC patients. After optimization for the choice of the 5 best markers for AA and CRC, ROC curve analysis revealed overall sensitivities of 75% and 89% for AA and CRC, respectively, for a ≥95% specificity, and up to 75% and 95% for AA and CRC, respectively, when combined with the FIT score. Targets were found to be stable in the stools up to 3 days at room temperature. In conclusion, these studies show that the detection of host mRNA in the stools is a valid approach for the screening of colorectal cancerous lesions at all stages and is applicable to a clinical-like setup.

16.
BMC Res Notes ; 14(1): 82, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663574

RESUMO

OBJECTIVE: Necrotizing enterocolitis (NEC) is the most frequent life-threatening gastrointestinal disease experienced by premature infants in neonatal intensive care units all over the world. The objective of the present study was to take advantage of RNA-Seq data from the analysis of intestinal specimens of preterm infants diagnosed with NEC. Function enrichments with Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to analyse previous data in order to identify biological and functional processes, which could provide more insight into the pathogenesis of NEC in infants. RESULTS: Gene set enrichment analysis indicated that the most significant biological pathways over-represented in NEC neonates were closely associated with innate immune functions. One of the striking observations was the highly modulated expression of inflammatory genes related to the IL-17 pathway including such as pro-inflammatory cytokines (CXCL8), chemokines (CXCL5 and CXCL10) and antimicrobials (DEF5A, DEF6A, LCN2, NOS2) in the intestine of neonates diagnosed with NEC. Interestingly, the increase in IL-17 expression appeared to be under the IL-17F form, as reported in Crohn's disease, another inflammatory bowel disease. Further investigation is thus still needed to determine the precise role of IL-17F and its downstream targets in NEC.


Assuntos
Enterocolite Necrosante , Citocinas , Enterocolite Necrosante/genética , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Interleucina-17/genética , Intestinos
17.
Front Physiol ; 12: 629222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584351

RESUMO

During the last two decades, a large body of information on the events responsible for intestinal fat digestion and absorption has been accumulated. In particular, many groups have extensively focused on the absorptive phase in order to highlight the critical "players" and the main mechanisms orchestrating the assembly and secretion of chylomicrons (CM) as essential vehicles of alimentary lipids. The major aim of this article is to review understanding derived from basic science and clinical conditions associated with impaired packaging and export of CM. We have particularly insisted on inborn metabolic pathways in humans as well as on genetically modified animal models (recapitulating pathological features). The ultimate goal of this approach is that "experiments of nature" and in vivo model strategy collectively allow gaining novel mechanistic insight and filling the gap between the underlying genetic defect and the apparent clinical phenotype. Thus, uncovering the cause of disease contributes not only to understanding normal physiologic pathway, but also to capturing disorder onset, progression, treatment and prognosis.

18.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525473

RESUMO

Celiac disease (CD) is an autoimmune enteropathy arising in genetically predisposed subjects exposed to gluten, which activates both innate and adaptive immunity. Although the pathogenesis is common to all patients, the clinical spectrum is quite variable, and differences could be explained by gene expression variations. Among the factors able to affect gene expression, there are lncRNAs. We evaluated the expression profile of 87 lncRNAs in CD vs. healthy control (HC) intestinal biopsies by RT-qPCR array. Nuclear enriched abundant transcript 1 (NEAT1) and taurine upregulated gene 1 (TUG1) were detected as downregulated in CD patients at diagnosis, but their expression increased in biopsies of patients on a gluten-free diet (GFD) exposed to gluten. The increase in NEAT1 expression after gluten exposure was mediated by IL-15 and STAT3 activation and binding to the NEAT1 promoter, as demonstrated by gel shift assay. NEAT1 is localized in the nucleus and can regulate gene expression by sequestering transcription factors, and it has been implicated in immune regulation and control of cell proliferation. The demonstration of its regulation by gluten thus also supports the role of lncRNAs in CD and prompts further research on these RNAs as gene expression regulators.


Assuntos
Doença Celíaca/genética , Regulação para Baixo , Duodeno/química , Gliadina/efeitos adversos , RNA Longo não Codificante/genética , Adulto , Estudos de Casos e Controles , Doença Celíaca/imunologia , Proliferação de Células , Células Cultivadas , Criança , Regulação para Baixo/efeitos dos fármacos , Duodeno/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-15/genética , Mucosa Intestinal/química , Mucosa Intestinal/imunologia , Masculino , Fator de Transcrição STAT3/genética
19.
Cells ; 9(8)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823612

RESUMO

The human intestine is covered by epithelium, which is continuously replaced by new cells provided by stem cells located at the bottom of the glands. The maintenance of intestinal stem cells is supported by a niche which is composed of several signaling proteins including the Hippo pathway effectors YAP1/TAZ. The role of YAP1/TAZ in cell proliferation and regeneration is well documented but their involvement on the differentiation of intestinal epithelial cells is unclear. In the present study, the role of YAP1/TAZ on the differentiation of intestinal epithelial cells was investigated using the HT29 cell line, the only multipotent intestinal cell line available, with a combination of knockdown approaches. The expression of intestinal differentiation cell markers was tested by qPCR, Western blot, indirect immunofluorescence and electron microscopy analyses. The results show that TAZ is not expressed while the abolition of YAP1 expression led to a sharp increase in goblet and absorptive cell differentiation and reduction of some stem cell markers. Further studies using double knockdown experiments revealed that most of these effects resulting from YAP1 abolition are mediated by CDX2, a key intestinal cell transcription factor. In conclusion, our results indicate that YAP1/TAZ negatively regulate the differentiation of intestinal epithelial cells through the inhibition of CDX2 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/genética , Células Caliciformes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Células CACO-2 , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HT29 , Via de Sinalização Hippo , Humanos , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
20.
BMC Mol Cell Biol ; 21(1): 14, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183701

RESUMO

BACKGROUND: Fibronectin (FN) assembly into an insoluble fibrillar matrix is a crucial step in many cell responses to extracellular matrix (ECM) properties, especially with regards to the integrin-related mechanosensitive signaling pathway. We have previously reported that the silencing of expression of integrin-linked kinase (ILK) in human intestinal epithelial crypt (HIEC) cells causes significant reductions in proliferation and spreading through concomitantly acquired impairment of soluble FN deposition. These defects in ILK-depleted cells are rescued by growth on exogenous FN. In the present study we investigated the contribution of ILK in the fibrillogenesis of FN and its relation to integrin-actin axis signaling and organization. RESULTS: We show that de novo fibrillogenesis of endogenous soluble FN is ILK-dependent. This function seemingly induces the assembly of an ECM that supports increased cytoskeletal tension and the development of a fully spread contractile cell phenotype. We observed that HIEC cell adhesion to exogenous FN or collagen-I (Col-I) is sufficient to restore fibrillogenesis of endogenous FN in ILK-depleted cells. We also found that optimal engagement of the Ras homolog gene family member A (RhoA) GTPase/Rho-associated kinase (ROCK-1, ROCK-2)/myosin light chain (MLC) pathway, actin ventral stress fiber formation, and integrin adhesion complex (IAC) maturation rely primarily upon the cell's capacity to execute FN fibrillogenesis, independent of any significant ILK input. Lastly, we confirm the integrin α5ß1 as the main integrin responsible for FN assembly, although in ILK-depleted cells αV-class integrins expression is needed to allow the rescue of FN fibrillogenesis on exogenous substrate. CONCLUSION: Our study demonstrates that ILK specifically induces the initiation of FN fibrillogenesis during cell spreading, which promotes RhoA/ROCK-dependent cell contractility and maturation of the integrin-actin axis structures. However, the fibrillogenesis process and its downstream effect on RhoA signaling, cell contractility and spreading are ILK-independent in human intestinal epithelial crypt cells.


Assuntos
Fibronectinas/metabolismo , Proteínas Serina-Treonina Quinases , Actinas/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Inativação Gênica , Humanos , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...